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ABSTRACT

Recent work at JPL in real-time distributed computation and control has culmi-

nated in a prototype force-reflecting telemanipulation system having dissimilar master

(cable-driven force-reflecting hand controller) and slave (PUMA 560 robot with custom

controller), extremely high sampling rate (1000 Hz), and low loop computation delay (5

msec). In a series of experiments with this system and five trained test operators cover-

ing over 100 hours of teleoperation, we measured performance in a series of generic and

application-driven tasks with and without force feedback, and with control shared between

teleoperation and local sensor referenced control. Measurements defining task performance

include 100-Hz recording of six-axis force/torque information from the slave manipulator

wrist, task completion time, and visual observation of predefmed task errors.

The tasks consisted of high precision peg-in-hole insertion, electrical connectors, velcro

_.t tach-de-attach, a.nd a twist-lock multi-pin connector. Each task was repeated three times

under several operating conditions: "normal" bilateral telemanipulation, forward position

control without force feedback, and shared control. In shared control, orientation was lo-

cally servo controlled to comply with applied torques, while translation was under operator

control. All performance measures improved as capability was added along a spectrum of

capabilities ranging from pure position control through force-reflecting teleoperation and

shared control. Performance was maximal for the bare-handed operator.
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SUMMARY

An extensive experimental evaluation has been conducted of several modes of teleoperation

using an advanced telemanipulation system, a representative sampling of tasks, and five test

operators. The results quantified substantial improvements in three measures of task

performance as more sophisticated control capabilities were added to the system.

The JPL Enhanced 6-Axis breadboard (ESAB) system (Bejczy & Szakaly, 1988) is a new

telemanipulation architecture featuring the JPL force reflecting hand controller as the input device

(master) and a Puma 560 industrial manipulator fitted with the JPL force/torque sensing smart

hand as the remote manipulator (slave). Control and coordinate transformation computation is

performed by distributing the load among two JPL Universal Motor Control systems, one each on

the master and slave sides.

The study developed three measures of performance and applied them to data from multiple

repetitions of four classes of tasks by five test operators. The total evaluation represented over

100 hours of experimental teleoperation.

The experiments tested performance of the tasks with 5 modes of teleoperation:

• position control

• position control with visual display of force information

• kinesthetic force feedback

• shared control

° direct manual control

In position control, the slave robot position followed the master and no force/torque

information was provided to the operator. In visual display of force, force and torque information

was provided to the operator through a computer graphics display. In kinesthetic force feedback,

force and torque information was brought back to the operator by applying forces and torques

directly to his/her hand through an active joystick. In shared control, force information is

simultaneously fed back to the operator, and used by the machine. Machine intelligence and

human intelligence cooperate to perform the task.

Direct manual control was achieved by having the operators perform the task directly without

the remote manipulation system involved. This experimental condition provided an absolute

benchmark independent of any particular telemanipulation technology. The other modes were

provided by the control software of the ESAB.

The tasks consisted of a mix of basic tasks designed to measure technical capabilities as

well as to illustrate suitability for applications. The four tasks were:
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Attach and detach Velcro fasteners

Velcro is commonly used in space vehicles for keeping parts fixed in the absence of gravity.

Its hook and loop fastening system has nonlinear mechanical properties which challenge

manipulation capabilities.

Insert a peg into a machined hole

Peg-in-hole is the classic task in robotic interaction with a mechanical environment. It is a

test of the robot's ability to achieve ultra-precision positioning in spite of nonlinear mechanics

and imprecise knowledge. The holes and peg in this experiment were machined to tolerances

common in automotive bearing practice.

Manipulate standard electrical connectors

This task is similar to the peg-in-hole task except that the components were standard off-

the-shelf electrical signal and power connectors: 120V chassis power cord, 1/4" headphone jack,

25-pin computer connector.

Connect a bayonet style multi-pin connector

This connector was more difficult than the others because it required a rolling motion to

make/break the physical and electrical connection.

Performance was evaluated with three measures: completion time, error rate, and sum-of-

squared-force (SOSF). All of these measures decrease with "better" performance of a given

task. The first is a purely economic measure applicable to predicting the cost of completing a

given operation. The last two are quality measures applicable to assessment of the degree of

risk with which a task can be performed.

RESULTS

Some condensed results of the study are presented in Figures i and ii. Task completion time

and the SOSF force performance measure were computed for the peg-in-hole and the electrical

connectors tasks. In these computations, data from nine different hole geometries (in the case of

the peg-in-hole task) and separately, the three electrical connector types (in the case of the

electrical connector task) were averaged over the five test operators to come up with overall

performance figures for the five control modes described above.

For the peg-in-hole task, both completion time and force dropped dramatically as the control

capability was increased from pure position control to the exquisitely sensitive control of the
bare human hand. For the electrical connectors, completion time was substantially reduced only

with shared control, but the force generated to complete the tasks dropped significantly even

with only visual display of the force information.
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Figure i

Completion time and force performance for the peg-in-hole task. The data are averaged over 27

repetitions by five test operators in each mode.
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Figure ii

Completion time and force performance for the electrical connectors task. The data are averaged

over 3 repetitions of insertion and extraction of three standard electrical connectors by five test

operators.
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CONCLUSIONS

This study has quantified the distance yet to be covered before teleoperators will have the

same dexterity as the bare human hand. We have measured task performance in three

dimensions: completion time, force performance, and error rate. All of these measures improved

as capabilities were added to the manipulation system although the improvement varied as a

function of task. The telerobotic system we tested has an extraordinary number of control

configurations (at least one million!). Only two of these forms of shared control were tested and

the resulting improved task performance has shown significant potential for the technology. The

performance of the unaided human was measured to serve as an upper bound on manipulation

performance.

The performance of the unaided operator should be carefully differentiated from the case of an

EVA astronaut. EVA task performance is reduced due to various factors such as the mechanics

of the suit and glove, the elimination of tactile sensation, and space physiological effects. For

mission planning purposes, pre-EVA time spent donning and removing the suit as well as pre-

breathing, etc. must be amortized over the available work time. The exquisite level of dexterity

achieved in these experiments by natural human manipulation is a goal to which both telerobot

and space suit designers can strive.

Future work will need to address additional constraints and technologies foreseen in space

applications. Experiments currently under way are addressing the effects of time delays

interposed between master and slave, and the unique characteristics of dual arm

telemanipulation.
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INTRODUCTION

Teleoperation is expected to perform a wide variety of tasks in future space operations.

Tasks such as space-station construction will create huge demands for extra-vehicular ac-

tivity (EVA), which will far exceed available astronaut time. Of course, a major benefit

of teleoperation is enhanced human safety: the operator is physically removed from the

actual worksite and the sources of danger, located instead at a control station on earth or

in a "shirtsleeve" environment on orbit. The price paid for the advantages of teleoperation

is usually expressed in reduced performance. Thus it is important to devote attention to

the quantitive evaluation of telerobotic technology in order to assess its benefits in terms

of mission productivity.

In order to pursue the goal of a realistic sense of presence at the worksite, many manip-

ulator designs, starting with Goertz (1954), have incorporated force feedback capabilities.

For a good review see Goertz (1964). As a result, many of the studies attempting to quan-

tify the performance of various teleoperator designs have concentrated on the question

"Can force/torque feedback improve teleoperation performance?"

I(ugath (1972) studied the effects of a compliant manipulation arm and force feedback

on manipulation of an inertial load. Tasks performed included the capture of a 400 lb

penduhun and manipulation of a 650 lb mass through a maze on a flat-floor air-bearing

table. Results showed force feedback had a large effect on task completion time and error

rate (i.e., hitting the wall) for the maze task.

Hill and Salisbury (1977) evaluated three master-slave teleoperators (the Ames Ex-

oskeletal Master Slave, MAll & MA23 by Flatau et al. 1972) with an instrumented task

board which emphasized the peg-in-hole task. Their results documented task completion

time for the different arms as a function of peg tolerance and showed improved perfor-

mance when force feedback was present. For a given peg clearance, task completion time

varied linearly with distance. They also reported bare-handed operator performance. The

pegs used ranged in size from 1 inch to 1.996 inches and were to be placed in a two-inch

hole. Hill's later work (1979) developed a model of teleoperator task completion time from

industrial time and motion models.

Other studies include those by Bejczy and Handlykken (1981), who investigated the

effects of varying force-feedback gain in the novel generalized bilateral teleoperator archi-

tecture in which the force-reflecting master hand controller (Bejczy & Salisbm'y 1983) is

kinematically optimized for man-machine coupling, and real-time computation is provided

for coordinate transformations between the master and slave joint spaces.

Recent evaluation studies (Draper et al. i987) have emphasized on broadening the

base of measurements against which task performance can be judged. Besides task comple-

tion time, useful measures included number of task errors, peak force and variance in force

(see also Hannaford 1987). Although ANOVA did not show a significant completion time

improvement due to force feedback, the other measures did indicating that force feedback

allowed the task to be performed with higher-quality results if not at a faster rate.



SYSTEM DESCRIPTION

The JPL teleoperation laboratory has recently developeda unique telemanipulation
system featuring advanced modesof shared- and supervisory-control-basedremote ma-
nipulation (Szakalay,Kim, & Bejczy 1989). The Enhanced Six-Axis Breadboard (ESAB)
teleoperation system consistsof the JPL-Stanford ForceReflecting Hand Controller (re-
cently refl,rbished and upgraded from the original [Bejczy & Salisbury 1981] design), a
Pinna 560 manipulator, and the JPL Puma Smart Hand (Fiorini 1988)(seeFigure la and
ib).

The JPL Puma Smart Hand is a single-degree-of-freedom gripping mechanism mount-

ed in series with a six-axis force-torque sensor. A local microprocessor performs gripping

control, force-torque sensor processing, and communication flmctions. These devices are

integrated and controlled with two JPL universal-control computer systems (Bejczy K:

Szakaly 1987), which perform all coordinate system transformations, master and slave DC

motor control, and operator interface functions. No part of the Unimation Puma control

system is used.

The computation and control system electronics are completely housed in two specially

modified multibus card cages. The card cages contain NS 32000 family computer boards,

power supplies, and power amplifiers for the master and slave. Master and slave electronics

card cages are connected by a parallel cable for bidirectional exchange of position and force

data.

The system contains a total of five NS 32016 processors dedicated to forward and

inverse kinematics computations for the master and slave manipulators. Processors com-

municate locally via shared memory, and between master and slave sides through the

parallel cable (Figure 2).

CAPABILITIES

The ESAB system can be configured by the user in a wide variety of ways. All control

modes and gains can be independently selected for each task-space axis. Motion Control

modes include position control, rate control, and "none." A "bead diagram" (Figure 3) can

be used to express the permissible control modes for each axis. In this diagram, a valid

control mode can be selected by stringing one bead from each column without crossing a

horizontal bar. The current system thus permits 10 possible control modes per axis. The

total number of control modes is thus a mind boggling 106 modes! In addition, for each

option column, one or more parameter value must be specified. The ESAB thus provides

an ahnost infinite set of control possibilities.

The Position-Control mode servo controls the slave position and orientation to match

the master's. An indexing function allows slave excursions beyond the 1-cubic-foot work

volume of the Force-Reflecting Hand Controller (FRI-IC), and allows the operator to work

at any task site and orientation from his or her own most comfortable position.
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Figure l(a) JPL Enhanced Six-Axis Breadboard System seen from operator control station.

Operator holds six-degree-of-freedom force-reflecting hand controller through which position

commands are send to the PUMA 560 industrial manipulator (background). Forces sensed by

the manipulator hand are transmitted to the operator's hand via the hand controller. Coordinate

transformations are performed by a special-purpose computing architecture (not shown). Opera-

tor views task board with the three task monitors (left). A curtain blocks direct viewing during

training and experimentation. Also shown are graphics displays: force/torque information

(bottom right) and real-time solid shaded animation (top right).
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Figure l(b) and (c). System components consist of (b) the Puma 560 manipulator, JPL Smart

Hand, and modular task board; and (c) the force-reflecting hand controller (foreground), control

electronics (bottom right), and predictive graphics display. The graphics display was not used in

these experiments.
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Master

Motion Control Mode

II

None

Side

Force Feedback

Slave Side

Local Force Accommodation

• Position Scale

• Velocity Scale

• Hand Controller

Damping

_r'_-_i:.i!iii!i!i!_i!i!;iiii!i!i!i

Parameters

• Force Feedback Scale

• Software-Spring Con-

stant

• Virtual Damping Coefficient

• Virtual Compliance Coefficient

Figure 3. Control of each axis of the six axis telemanipulation system can be specified by

conceptually "threading a string of beads" from left to right without crossing any heavy lines.

Within each column, one or more parameter values may be chosen as appropriate. Key: "Kin.

F.F.B.," Kinesthetic force feedback, "SWS," Software Spring -- a restoring force which returns

the joystick to the position corresponding to zero velocity. Inset shows typical control modes

selected for each axis for the experiments in this study.
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Force Feedback can be generated by the hand controller to serve two functions: re-

flection of task forces and application of a return force to center the hand controller when

released (this function is referred to as "software spring" or SWS). Force reflection is

optionally used with position control and SWS with rate control.

Rate Control sets slave endpoint velocity or angular velocity in task space based on

the displacement of the FRHC.

Position and rate modes exist solely on the master side -- the slave receives the

same incremental position commands in either case. In contrast, Force-Accommodation

mode resides at the slave side. In this mode, in selected degrees of freedom the slave

computer generates position setpoints based on integration of the sensed force or torque

in that direction. The effect of this integrated force feedback is to produce a viscous

mechanical impedance at the end effector. This is equivalent to the generalized damper of

Whitney (1985). (Recent work has extended this mode to include true compliance, e.g., the

manipulator emulates a spring and damper in the selected axes.) Force-accommodation

mode provides a local control capability for complex manipulation tasks such as the peg-

in-hole task.

Because of the local force accommodation capability, several forms of "shared control"

(in which both manual and automatic control coexist) are possible. For example, control

can be allocated in each task-space degree of freedom in a manner similar to Hybrid Control

(Raibert & Craig 1981) between manual and automatic (local) control. Alternatively,

control can be shared even in the same axis. In this study, "Shared Force Accommodation"

shall describe a mode in which the operator's commands and the local force accommodation

signal are summed in task-space orientation axes and position control with force feedback

used in translation axes. "Hybrid Force Accommodation" shall describe a mode in which

orientation was solely under control of local force accommodation and translation under

position control by the operator.

In this study, five control modes plus direct human task performance were experimen-

tally tested. These are:

1. Position control without force feedback

2. Position control with visual force and torque display

3. Position control with kinesthetic force feedba&

4. Shared Force Accommodation

5. Hybrid Force Accommodation

6. Direct human operation

The same performance measures were computed for all six modes of operation. Direct

human operation was included to provide a measure of task difficulty which is independent

of the manipulation system we used. Presumably the tasks used in this study can be related

7



to others by comparing human performancefigures. The httman performance figures also
provide a goal point for telemanipulator system performance. Direct human operation
bears the samerelationship to EVA. Direct human operation represents the performance

point toward which space-glove designers can aim.

CONTROL STATION

The master side of the system is installed in a separate control station without a direct

view of the robot work area. Three television cameras provide top, upper-left rear, and

right rear views of the task board. The two rear-view cameras could be remotely controlled

for focus and zoom, but fixed views were used for all of the experimental tasks.

EXPERIMENT GOALS

This study is part of a longer-term effort to quantitatively evaluate a snapshot of

present telcmanipulation technology to expose areas in which improvements are needed

for specific real-worht applications. An additional goal was to exptore the possibilities for

the evaluation or preselection of operators of telerobots. As a first step in this direction,

we looked at some well-known motor control tests to assess their predictive value for

teleoperation performance.

The overall experimental approach was to design a preliminary experiment which

looked at a relatively large number of independent variables. The results of this study are

being used to guide current work in which focused experiments are performed to obtain

statistically powerflll results.

The tasks used for teleoperator evaluation fall naturally into two classes: generic tasks

and application tasks. Generic tasks are idealized, simplified tasks which are designed to

test specific telemanipulation capabilities. Application tasks are designed as much as

possible to mimic real-world uses for teleoperation. Evaluations based on generic tasks

illustrate the capabilities of existing telerobotic technology, while application tasks guide

the technology in the direction of greatest payoff.



METHODS

EXPERIMENT DESIGN

Study Variables

The experiment design varied control mode, task, and subject. The dependent mea-

sures were task completion time, sum of squared forces (SOSF), and number of errors.

Three repetitions of each subtask were performed by each subject in each of the control

modes. All subtasks were performed in random sequence to form one repetition (random-

ization without replacement). All subjects performed all repetitions of a given control

mode before the next mode was tested.

Robot sensing and control data were recorded by a Unix-based laboratory computer

system through its real-time parallel port. This parallel port is connected to a port on

the universal controller which can send any of the robot control parameters at the servo

rate of 1 kHz. We recorded the six axes of force and torque information, as well as gripper

opening position and gripping force sensed by the two fingers. A typical record of this

raw data forms eight plots. Figure 4 shows one repetition of the peg-in-hole task. The

information is serially multiplexed in a packet of 10 bytes for a net sampling rate of 100 Hz

per channel. The complete data vector is described in Table 1. One of the nine data bytes

is transferred every millisecond followed by a synchronization byte. Task information such

as completion time and task performance strategy can be computed from the time records

of forces and torques used in performing the task (Hannaford 1987). Data recording began

and ended when the experimenter pressed a mouse button on the laboratory computer

system.

We measured force/torque information of the direct human operation by mounting

the task modules on a force/torque sensor removed from the robot and attached to a stable

base. The task board surface was mounted at the center of the force-sensing coordinate

fl'ame. This had the effect of reversing measured forces in the y and z directions relative to

the robot tasks. The SOSF (see below) force performance measure ignores this difference.

9
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TABLE 1

DATA RECORDING CHANNELS

# NAME RANGE SOURCE

1 Jaw Position 0-255 units

2 Finger Force 1 0-100 lb

3 Finger Force 2 0-100 lb

4 x Force 0-10 lb

5 y Force 0-10 lb

6 z Force 0-10 lb

7 x Torque 0-40 in.-lb

8 y Torque 0-40 in.-lb

9 z Torque 0-40 in.-lb

Hand-position transducer

Left-finger group force sensor

Right-finger group force sensor

6-axis wrist force-torque sensor

6-axis wrist force-torque sensor

6-axis wrist force-torque sensor

6-axis wrist force-torque sensor

6-axis wrist force-torque sensor

6-axis wrist force-torque sensor

Task Board

The task board (Figure 7) consists of a 21-in. by 21-in. frame which accepts modules

of either 7 in. by 7 in. or 14 in. by 7 in. The frame is adjustable in its vertical angle

and can fold down completely for compact storage. The modular design allows for easy

construction of new tasks. Modules can be moved or interchanged within the task board.

All of our generic tasks have been constructed on the 7-in. by 7-in. module size. Detailed

information on the task-board design is included in Appendices A and B.

Another advantage of the modular task-board design is that the modules can be

mounted individually on a six-axis force-torque sensor to enable force-torque recordings

during direct manual operation of the tasks. This would be impractical without the modu-

lar design because the large mass of a complete task board would cause enough gravitational
force to saturate the sensor.

13



Figure 7. Two views of the task board and the robot hand performing the peg-in-hole task.

The modular task board design has nine 7" x 7" openings for task modules. Shown are the four

task modules used in the experiments: (a) Bayonet Connector and Peg-in-hole tasks (upper

and lower left modules); (b) Velcro and Electrical Connectors tasks (upper and lower right mod-

ules). Task modules could be removed and mounted on a separate force-torque sensor for mea-

surement of force and torques in hand operation.
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Tasks

The four tasks used were attach and detach velcro, peg insertion-extraction, manip-

ulating three electrical connectors, and manipulating a bayonet connector. Each task in

turn is broken down into component subtasks:

Task 1 Velcro attachment. Exchange the position of two differently shaped blocks at-

tached to the task-board module with velcro. Attempt to attach the blocks

securely while minimizing unnecessary force.

Task 2 Peg-in-hole matrix. This task consists of nine holes arranged in a square matrix.

The rows each have a progressively larger clearance, and each column has a

different chamfer. The subtasks are to take the standard peg and insert it into

a given hole. The dimensions of this task were verified after performance of the

experiments and are shown in Figure 8.

Task 3 Electrical connectors. Tile subtasks consist of the mating and unmating of three

standard electrical connectors: a three-prong chassis power-cord connector, a

DB25 25-pin signal connector, and a 1/4-in. telephone-style plug.

Task 4 Bayonet connector. This task consists of unlocking, unmating, mating, and lock-

ing a Bendix bayonet-style electrical connector.

Task Details

Peg-in-hole is a popular task because it is easy to specify and thus can be, and has

been, duplicated in many labs. In comparing peg-in-hole tolerances among studies in the

literature, a useful measure is an information measure of precision, I:

I = log 2 (H/(H- P))

where H is the hole diameter and P is the peg diameter. This measure is tabulated in

Table 2 for some recent telemanipulation studies which used the peg-in-hole task. These

dimensions can be placed in the context of industrial practice using Figure 9.

TABLE 2

STUDY HOLE SIZE

(in.)

PEG SIZE

(in.)

INFORMATION RANGE, I

(bits) Figure 9 symbol

Hill & Salisbury 1977

Hill 1979

McGovern 1974

Pepper & Kaomea 1988

Present Study

2.000

1.000

2.550-12.540

0.254

1.003-1.0006

1.000-1.996

0.250-0.984

2.54O

0.295-0.386

0.998
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BOARD DIMENSIONS

.0O5

9

@
TOP: 1.0007

BOTTOM: 1o0005
NO COUNTERSINK

TOP: 1,0019

BOTTOM: 1.0019
NO COUNTERSINK

TOP: 1.0030
BOTTOM: 1.0032

NO COUNTERSINK

.0039

TOP: 1.0006

BOTTOM: 1.0004
1,062 DIA. COUNTERSINK

TOP: 1.0018
BOTTOM: 1.0016

1.062 DIA, COUNTERSINK

TOP: 1.0028
BOTTOM: 1.0032

1.062 DIA. COUNTERSINK

.0025

TOP: 1.0006

BOTTOM: 1.0004

1.125 DIA. COUNTERSINK

TOP: 1.0016
BOTTOM: 1.0016

1.125 DIA. COUNTERSINK

TOP: 1.0032

BOTTOM: 1.0032
1.125 DIA. COUNTERSINK

DIAMETER

O.9974
0.9977

0.9982
0.9988

PEG DIMENSIONS

THIS END
"_---- ENTERED

HOLE FIRST
LENGTH = 4.75 IN.

DIAMETER

0,9944

0.9950
0.9964
0.9965

Figure 8. Dimensions of the holes and peg used in the peg-in-hole task.
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Figure 9. Comparison of tolerances used in the peg-in-hole task with industrial design
practice.
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Note that this measureis different from similar "Fitts" measuresused by Hill (1972)
and Pepper et al. (1988). Our measureignores the translation component and focuses
instead on the difficulty of insertion and extraction of the peg once the tip is properly
positioned. The Fitts measureincorporates the translation portion of the peg-in-hole task
as:

1
logs(2A )IF= _p

where A is the distance moved to reach the hole and T is the time to complete the movement

and peg insertion. Our peg-in-hole task included about 6 in. of translation which was

usually accomplished in about 10 sec. Thus, the maximum Fitts rate of our task was

about 12 bits/see. This type of analysis is more thoroughly reviewed by Wiker (1988).

The other tasks used here are similarly easy to specify because the)' use commercially

a_milable components. The electrical connectors were unmodified except for a square grip-

ping fixture attached to the locking ring of the Bendix multipin connector (type #PT06A-

20-16S/16P), and velcro is a commonly available material.

Task Sequences

Each task was performed according to a prespecified procedure for which the subjects

(operators) trained. The task sequences were interspersed with "taps," in which the oper-
ator made momentary contact with a designated point on the task board either with the

bare gripper or with a held object. The taps injected distinct spikes in the force record

(especially the X axis, normal to the task-board surface, see Figure 4). All tasks began

and ended with a tap on a designated square on the task-board surface. The resulting

force spikes provided well-defined benchmarks for measurement and interpretation of the

progress of the task by inspection of the force records alone.

The tasks, subtasks, and sequences for the tasks are listed in Appendix C.

Test Operators

The test operators for this experiment were chosen from a population that would

haste technical background, but not an in-depth knowledge of robotic technology. Detailed

robotic knowledge or knowledge of the specific system itself was felt to be distracting and

to not reflect forseeable operator populations. Subjects recruited were graduate students,

undergraduate students, and one technician, none of whom were specialists in robotics.

Pretesting and Training

Before telemanipulation training, the subjects performed two standard tests designed

to assess motor-control ability. These tests were administered automatically by a graph-

ics workstation. The motor control battery consisted of a rotary pursttit tracking task

and a mirror tracing task. In the first task, the operator controlled a small green dot and

attempted to keep contact between the dot and larger red clot moving in a circle at approx-

imately 33 revolutions per minute. In the second, the operator drew the outline of a star

between two path boundary lines in the presence of 0-, 90-, 180-, and 270-degree rotations
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of cursormotion relative to hand motion. The tracking-task performancewasmeasuredby
percentageof the time on target; the star-tracing task by percentageof line length within
the displayedoutlines. The subjectsuseda mouseto interact with the computer; the tasks

were completely controlled and scored by the computer.

After the "motor control" testing, each subject received 2 to 4 hours of practice on

the telemanipulation apparatus. The practice sessions consisted of four 30-minute sessions

in which the task set was performed with and without force feedback.

ANALYSIS AND PERFORMANCE MEASURES

The raw force-torque data are a rich source of information which can be understood in

terms of the task description and which can in turn be used to quantify task performance.

This section will describe computations which were performed on the force/torque data to

produce performance measures.

Data recorded at such a high rate (100 Hz) were computationally difficult to analyze

and contained spurious information such as mechanical ringing signals showing up in the

force/torque plots (Figure 10). To simplify plotting and analysis, the data were filtered

and reduced by a decimation process which averaged groups of 10 successive samples to

produce a filtered output data file. Figure 11 shows the resulting data in which mechanical

oscillations above 5 Hz are suppressed.

Completion Time

The simplest and most long-standing task performance measure, completion time, can

be determined from the length of the data file containing the force-torque data. The length

of the data file was determined by the time between the experimenter's button presses. In

most of the cases reported here the movement time was long compared to human reaction

time and thus errors due to reaction-time variability of the experimenter are minimal. To

prevent even this small error, our analysis software identified the starting and ending taps

and used them as the basis of completion time.

Sun] of Squared Force (SOSF)

This measure is computed by taking a nondecreasing sum of the square of the force

or torque value
N

SOSF : _ .fi2dt

where N = nmnber of data samples (task time over dr), .fi is the ith sample of force or

torque, and dt is the sampling interval (0.01 scc in this experiment). SOSF is accumu-

lated separately for each force and torque axis. An alternative and related force/torque

performance measure is RMS force/torque. RMS force/torque is not preferred because it

cannot be added among different movements, channels, or segments. Adding the RMS

measure biases the resulting sum in favor of shorter segments or tasks. As with completion

time, SOSF can be computed over the whole record or between starting and ending taps.
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Figure 10. Unprocessed data from the force-torque sensor. Note expanded time scale.

was filtered by averaging adjacent non-overlapping windows of 10 samples (see Figure 11).

Data
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Visual Error Scoring

A third way in which performance can be measured is through an observer's notations

of the "quality" with which a task is performed. In our experiments, a set of "errors"

was defined and explained to the test operators and experimenters (see Table 3). An

experimenter watched each repetition of the experiment and counted occurrences of each

error.

TABLE 3

Task Errors

SYMBOL NAME DEFINITION

S Slip

I Incomplete

GI Gripper Interference

D Drop

E Excessive Force

Object slips in jaws.

An inserted object such as a peg is not completely

inserted.

Gripper touches an object not related to the current

task.

Gripped object is dropped.

Visible deflection of the task board.

Individual differences among error scorers might be a source of bias ill this measure.

To detect this possible bias, four of the experimenters scored the same experimental run.

Their error counts were substantially in agreement.

Task Segmentation Analysis

In some cases it is desirable to compare performance measures among different seg-

ment.s of the same task. For example, to compare the completion time and SOSF for peg

insertion with peg extraction. This was accomplished through a computer program which

could recognize benchmarks in the force signal, and divide it in time between a set of seg-

ments. Returning to the peg-in-hole example (Figure 12a, b, c, see especially "x force" in

part a), the data can be clearly divided into "translation" (the manipulator is in free mo-

tion; no contact forces), "taps" (shar p spikes in force), "insertion" (predominantly positive

forces), and "extraction" (predominantly negative forces). Both :"completion time" and

SOSF can thus be computed for each segment of the task. This could potentially identify

which task segments are more or less affected by a particular system improvement.

The segmented analysis program uses a description of the expected task sequence

entered by the operator. This description is entered in a simple language expressing a

rough model of the expected forces developed during performance of a task. The elements

of this language are single letters describing typical force patterns (see Table 4). Referring

to the task description of the peg-in-hole task for example, the experimenter can write the

expected force sequence as:
"m,t,m,i,m,t,m,x,m,t,m"
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Figure 12. Segmentation of task performance data: shown is an example of x axis force data

from the peg-in-hole task automatically divided into phases by the segmentation algorithm.

Designation of phases is:

m Move: translation phases of the task involving no contact forces.

t Tap: momentary intentional impact with task board surface -- a timing mark.

i Insert: forces arising from insertion of the peg.

X Extract: forces arising from extraction of the peg.
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Symbol Definition

Table 4

Task Phase Description Language

m

t

i

X

Movement: free motion of the slave, contact forces are negligible.

Tap: a sharp force impulse.

Insertion: sustained predominantly positive force.

Extraction: sustained predominantly negative force.

Segmentation Algorithm

The segmented analysis program uses this description to drive a thresholding state ma-

chine which identifies the time at each transition. This is accomplished by first identifying

the taps in the data.

Each tap separates the task into smaller actions. Before and after each tap is a

short period of time when no forces are exerted on the hand. This enables us to separate

the taps fi'om the rest of the data. The algorithm finds the taps in the x-force data so

that completion time and SOSF analysis can be done on the individual actions. A tap is

defined by several different parameters including minimum height, h, maximum width, w,

minimum time before the tap when no forces occur, tb, minimum time after the tap when

no forces occur, te, tolerance to allow for noise during the periods before and after the

tap, tol, and finally the maximum time between the beginning of the tap (when the force

crosses the tolerance level) and when the force is greater than or equal to the minimum

height, t21 (Figure 13).

The tap algorithm is split up into four states. In each of these four states, specific

conditions must be met to cause a transition to the next state; if not, the algorithm jumps

back to state 1 and analysis continues until the end of the data.

State 1 Move forward through the x-force data until the end of the data or until crossing

the minimum height (force) threshold, h. Mark this position.

State 2 Jump backward through the x-force data the minimum length of time for a tran-

sition before the tap, tb. Step forward in the x-force data until the force exceeds

the tolerance tol. Mark this position. Check to see if the length in time be-

tween this mark and the mark from state 1 is within the limit defined by the tap

definition, t21. If not, go back to state 1; if so, proceed to state 3.

State 3 Jump forward in the x-force data from the state 1 mark to the width of a tap, w,

plus the minimum length of time for a transition, te. Step backwards until the

force jumps outside of the tolerance, tol, and mark the position. Check to see if

the length in time between this point and the state 2 marker (the beginning of

the tap) are within the definition of a tap width, w. If not, go back to state 1; if

so, proceed to state 4.
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Figure 13. Diagram of algorithm for identification of a "tap," a voluntary impact designed into

the task definition to act as an event marker. The algorithm is a state machine driven by thresh-

old crossing events. The six parameters define the permissible variation in tap height, width, etc.
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State 4 A tap has been found. Store the beginning and end of the tap and calculate the

center of the tap. Return to state 1.

After the taps are located, the movement time is calculated, and boundaries are

defined for the insertion and extraction phases. Completion time and SOSF can then be

accumulated for each task phase.
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RESULTS

SUMMARY RESULTS

The results of the experiments form a complex set of data points on the three-way

experimental design. Each point in tile three-dimensional space formed by the control

modes, subjects, and tasks contains three reduced-data points for each of the three rep-

etitions of each experimental trial for each of the five subjects. These are the completion

time, SOSF, and number of errors.

The reduced data. can be further simplified by averaging across one or more dimensions

of the design. As a first look at the data, we have computed averages over all subjects

and over the first three tasks, "velcro," "peg-in-hole," and "electrical connectors." The

fourth task was not included in this average because it took significantly longer than the

others (approximately 150 seconds vs. 75 seconds), and was often not completed due to its

difficulty. There are nine subtasks for the peg-in-hole task (corresponding to the nine test

holes) vs. two for the velcro and three for the electrical connectors. These averages (Figures

14, 15, and 16) show clear trends in performance as the level of capability progresses from

position control, through force reflection, up to the bare-handed operator.

Completion time (Figure 14) for the three primary tasks drops from an average of 92

seconds with position control to an average of 63 seconds when force feedback is added.

Completion time drops to only 14 seconds for the bare-handed human. SOSF (Figure 15)

drops even more dramatically (from about 3500 to 500 lb2-sec) when pure position control

is augmented with force feedback and further (to 200 lb2-sec) for the bare-handed case.

Tile number of errors observed per repetition drops from 3.0 to 1.1 when force feedback

is added. No errors were observed in the bare-handed data.

The difference between the first two cases and the bare-handed case is so great as to

not require statistical validation. The two-tailed Z test was used to test the null hypothesis

that the differences between position control and force-feedback control performance were

due to chance. The number of subtask repetitions performed under each control mode

is shown in Figure 17. Because the nmnber of data points is large compared to one

(approximately 130 to 150), the Z statistic could be used.

The probability of the null hypothesis calculated by this procedure was much less

than 0.01 in all of the differences reported above, giving them a high degree of statistical

significance.

These results summarize one of the main results of this report, that the provision of

f()rce feedback reduces completion time for a task mix emphasizing energetic interaction

and precision manipulation by approximately 30 percent, reduces SOSF by a factor of 7,

and reduces errors in performing the task by 63 percent.
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Figure 14. Average completion time performance for five operators performing a mix of tasks

under three conditions: (1) position control only, (2) position control with kinesthetic force feed-

back, (3) direct operation with the bare human hand.
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perform the task. SOSF drops dramatically as manipulation performance is improved.
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The motor control pretesting was performed in order to determine whether the perfor-

mance of individual operators in teleoperation could be predicted from their performance

on the pretests. A summary of these results is presented below. For further details, see

Appendix D.

The analysis attempted to compare performance on the various motor control tests

with performance in the various telemanipulation tasks. Linear regression was computed on

the points formed by plotting the performance of each operator on selected axes consisting

of one pretest performance measure and one measure of telemanipulation task performance.

The approach was to check for statistically signifcant correlations which would indicate

the predictive power of the selected tests. The significance of a particular correlation is

determined by the permissible P value (in this case 0.05) and the computed value of the

correlation coefficient r. For a given number of data points (subjects) there is a threshold

on r below which the correlation is not significant. The results were that the number of

significant correlations was approximately equal to that expected by chance. Thus the

selected motor control tests appear not to predict telemanipulation performance.

Because of the small number of subjects, only very strong correlations can be detected

with high confidence. Repetition of similar experiments with more subjects is underway

to increase the ability to detect smaller but still significant correlations.

DETAILED RESULTS

As an example of the raw data resulting from these experiments, the complete, filtered

data set for a single repetition of the peg-in-hole task shows a complex coupled set of time

flmctions (Figures 4, 5, 7) in which forces and torques vary (Figures 4, 5) as the jaws release

and then regrasp the peg (Figure 6, t = 25 to 40 seconds). Recall that the task is defined

to start and finish with the peg held in the gripper. The z-axis force (Figure 4, bottom

trace) in conjunction with the jaw opening (Figure 6, top trace) provides a clear picture of

the task sequence. The operator starts by tapping the grasped peg against the task board

and moves to the hole. A large positive x-force indicates the struggle to insert the peg,

which is complete when the jaws release it at t = 25 sec. The jaws reclose on empty space

to tap the back of the inserted peg (t = 32 see), and the peg is regrasped at t = 39 sec at

which point withdrawal almost immediately begins. After the peg is completely removed

and contact forces cease (t = 60 see), there is a short translation to the mark, and a final

tap. Similar sample records from the other tasks are reproduced in Appendix E.

When selected experimental records from the several control modes are compared

(Figure 18), the x-axis force traces tell most of the story for the peg-in-hole task because

of the alignment between the task axis and the force/torque sensor's z-axis. Comparimn

of performance in 'the several control modes shows the reduced completion times and force

levels achieved as more capability is added to the system.

In the visual feedback condition (Figure 18) the operator uses position control without

kinesthetic force feedback, but receives contact force/torque information by means of the

graphic display. With only the visual force/torque information, the task is completed in
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is force for 4 repetitions of the peg-in-hole task under different control modes. (a) manual, (b)
enhanced control; "Hybrid Force Accommodation", (c) force feedback, (d) visual feedback.
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about 100 seconds, and peak forces of up to +10 lb and -9.5 lb are observed in the insertion

and extraction phases respectively. When kinesthetic force feedback is used (Figure 18b),

completion time drops to 82 seconds, and peak forces drop to approximately 4- 5 lb.

Sensed force and torque information can be used locally by the manipulator control

system to implement an effective compliance or, in general, a mechanical impedance of

the manipulator. Performance with one example of this type of shared control is shown in

Figure 18(e). In this mode, the orientation axes were controlled automatically to move in

the direction of sensed torques. Position axes were controlled by the operator. Completion

time was reduced to 60 seconds. Forces were substantially reduced only for the extraction

phase, in which the peak force was -4 lb.

Finally, when the task was performed manually (Figure 18d), the task-related forces

were practically invisible compared to the taps. Completion time was about 15 seconds,

and peak forces reached +3 lb and -0.5 lbs.

Although fascinating in themselves, these raw data records are isolated anecdotes of

individual task performances. As described in the mnmnary above, data from all repetitions

of the experiment were reduced to the three basic performance measures. The visually

scored error rates were manually collected with the reduced performance data.

The first level of detail added to the summary results was to break them down by

individual task instead of averaging all the tasks together (Figures 18a, b, c). Doing

this showed that the effect of force feedback was not the same for all of the tasks. For

the peg-in-hole task, completion time followed the expected course, dropping by almost
a factor of two from 105 to 59 seconds as force reflection was added. For the velcro-

blocks task, completion time increased fl'om 72 to 83 seconds. Both of these changes were

statistically significant when analyzed by the method described above. For the electrical

connectors, when force feedback was added only a slight change from the completion time

of 70 seconds was observed which was NOT statistically significant. Of course, all of the

tasks were completed much faster by the bare-handed operator. The average time in this

case was about 15 seconds.

The SOSF data tell a different story. As with completion time, for the peg-in-hole

task there was a dramatic drop in SOSF (from 5400 to 500 lb2-sec) as force reflection was

added. The increase in completion time seen for the velcro task was accompanied by a

significant decrease in SOSF (from 800 to 400 lb2-sec). For the electrical connectors, the

SOSF measure declined significantly despite the unchanged completion time.

The data of Figure 19 showed the variation of performance with control mode as

task was varied. The same data could be replotted to highlight the task dependence of

the effects of mode (Figures 21, 22). The first task (positioning velcro blocks) showed no

significant effect of force feedback on completion time (see above). The SOSF (Figure 22)

was reduced by about 1/2 to a value close to the manual level. The second task, peg-in-

hole, showed a significant reduction in both completion time and SOSF with the addition

of force feedback.
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feedback. Note that force feedback significantly increased CT for the velcro task.
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The third task, electrical connectors, showed no change in completion time, but a

.significant drop in SOSF for all three connector types when force feedback was added.

The last task, the bayonet connector, was similar in that there was a smaller change in

completion time than in SOSF (see the last columns of Figures 23 and 24). The relative

changes in completion time and SOSF with force feedback thus appeared to depend on the

characteristics of the task.

Within an individual task, the results could be further broken down by subtask. This

was done for the nine holes of the peg-in-hole matrix (Figures 23 and 24) (recall that the

holes varied in diameter and in degree of chamfer). Referring to Figure 8 for dimensions, we

see that diameter is constant for holes 1-3, 4-6, and 7-9. Thus a dependence of difficulty

on hole diameter would be expected to show up as a stepwise decrease in performance

(increase in completion time (CT) or SOSF) with hole number. Chamfer varied along the

rows of the matrix. Thus, dependence of performance on chamfer would be expected to

show as a sawtooth dependence of CT and SOSF on the hole number modulo 3.

Neither of these dependencies was conclusively demonstrated by either the comple-

tion time or SOSI:' data. Thus, for the range of information measures covered by our

experiment (6 to 8.6 bits), performance was remarkably independent of hole diameter or

chamfer. Furthermore, the performance without force reflection was uncorrelated with the

performance with force reflection.

When the electrical connectors task was broken down by subtask, we measured per-

formance for the individual connector types (Figures 25 and 26). Completion time (Figure

25a) varied from 60 seconds (1/4-in. and 3-prong connectors) to 100 seconds (25-pin

Cannon D connector). Improvement in completion time was slight or nonexistent with

force feedback (triangles, dashed line). The force measure, however, showed substantial

improvement for all three connectors. The force measure ranged from 800 to 2700 lb2-sec

for the connectors without force feedback to 200 to 700 lb2-sec with force feedback. The

improvement was greatest for the 25-pin D connector. Note that for these tasks, substan-

tial improvement was shown in SOSF performance while there was little or no change in

completion time.

The CT and SOSF performance measures are well defined not only for the whole

task, but for the individual segments of the task as well. The segmentation algorithm

described above was used on 150 repetitions of the peg-in-hole task. The results were

completion times and SOSF measures for the individual segments: "movement," the free

motion of the peg between hole and tap location; "insertion," the phase of the task from

tip contact to grip release; "extraction," from gripper-peg contact to tip clearance; and

"tap," momentary peg-to-board contact.

The CT was plotted for each of the segments comparing force-feedback and position-

control modes (all subjects, Figure 27). As expected, completion time for the movement

and tap phases were unchanged by the addition of force feedback (at about 32 seconds and

2 seconds respectively). The insertion and extraction phases were accomplished markedly

faster (11 vs. 31 seconds for insertion, 10 vs. 35 seconds for extraction) when force feedback
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waspresent. Thus force feedbackdifferentially affecteddifferent task phases.

The differential effect of force feedbackdramatically changedthe proportion of the
total time spent in eachof the task phases.Pie charts illustrate the mix of manipulation
types in the task. Without force feedback (Figure 28) the task was dominated by the
insertion and extraction phases:the task componentsinvolving energetic interaction with
the environment. Together they accountedfor 2/3 (67 percent) of the total task time of
102 seconds.When force feedbackwaspresent (Figure 29) the total time was reduced to
55 seconds,and the proportion of time spent in energetic interaction was reduced to 37
percent. In contrast to the caseswithout force feedback,the dominant proportion of the
total time with forcefeedbackwas consumedby the free-motion portions of the task.

Another variable of interest is the individual operator. Are there differencesin per-
formance between the different subjects? If so, are they consistent and predictable? Do
different operators appear to follow distinct and identifiable strategies? Although this
experiment was not designedto be a statistically rigorous study of these effects,certain
regularities haveemergedwhich inform speculationon thesequestions.

The task performance measurescan be broken down and individually computed for
eachsubject (Figures 30,31, and 32). On the basisof this limited sample,completion time
(Figure 30) for the first three tasks wasapproximately the same(approximately 105see)
for all five subjects exceptfor subject 5 who wasconsistently faster (approximately 50see).
The SOSFvaried with the task but variedrelatively little (i.e., by anamount comparableto
one within-subject standard deviation) among subjects (Figure 31). Standard deviations
in completion time appeared to be relatively invariant at about 30 secondsacross the
subjects for tasks 1-3. Standard deviation (s.d.) in completion time was also relatively
constant at about 105secondsfor the difficult bayonet connector task. Error rates (Figure
32) varied markedly acrossthe subjects asdid the standard deviation of error rate from a
high of 3 errors per repetition (s.d. = 2.5) to a low of 1 error per repetition (s.d. = 0.5).
Subject 5 had the lowest (best) value in eachof the three performancemeasuresfor most
tasks.

PRELIMINARY RESULTS: ADDITIONAL CONTROL MODES

Future applicationsof telemanipulationswill rely increasinglyon the sharingof control
between the human operator and, at first, limited autonomous functions. Beyond the
three basic control modesreported above, Position Control, Kinesthetic Force Feedback,
and Direct Manual, three additional modes (defined below) were evaluated in smaller
experiments. Theseexperimentswere of smaller scalebecauseof limitations of time and
becausesomedata werelost due to electromagneticinterferenceproblems. (Tile numberof
data points for eachof the six modesis shownin Figure 17.) The generality of theseresults
is thus somewhat limited. However, they are reported becausethey still represent three
repetitions of each subtask element, and are our first sourceof quantitative performance
information on theseadvancedmodes.
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Time for Segmented Task using No FFB
Task #2: Peg in Hole

Total Time: 105 sec

Extract (35.7%)

Move (30.8%)

Tap (2.1%)

Insert (31.3%)

Figure 28. Task phase breakdown with Position Control. Without force feedback, total com-

pletion time is approximately evenly divided between moving, insertion, and extraction in the

peg-in-hole task. The data are the same as the dotted line of Figure 27.
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Time for Segmented Task using FFB
Task #2: Peg in Hole

Total Time 55 sec

Extract (16.9%)

Insert (19.9%)

Move (59.4%)

Tap (3.8%)

Figure 29. Task phase breakdown with KFF. When the task is performed with force feed-

back, total time drops from 105 sec to 55 sec. As a result, the completion time is dominated by

the translation phases of the task. Changing the level of manipulation capability redefines the

task weights.

47



3O0

275

25O

225

2OO

t-. 175
ro
Q_

"-" 150

E
_ 125

100

75

5O

25

0

Avg. Completion Time: All Tasks

T T
I I
I ! T

I I I

I _, _ _"t'x T I --
L-._" I x. I I

I I "_x x I _""_'I" x
I I _I_- I

/ .,,- I T '_\
/ + "r + "
.-p

-- Task 1
..... Task 2
.... Task 3
-- - -- Task 4

!

I I i I I
1 2 3 4 5

Operator

Figure 30. Inter-operator variation. Completion time was relatively constant among the test

operators for the first three tasks. Variation was greater for the difficult bayonet connector
task.

48



ed

v

O
LL

16000

14000

12000

10000

8OOO

6O00

4000

2OOO

Sum of Forces Squared: Subjects for All Tasks

1_ -1-

-L I\\ I
I I \ I
I I \ I
I --I- \\I
I J ,,I/
I i I

_I: i ,
"'-... -4- -t-

J • .

/

/

/
/

o

I " "'.. I °
| " . ° I G o °

........ 4----.....

o _ Task 1
o ..... Task 2
A .... Task 3
a -- --- Task 4

m

I t -,L.
1 2 3 4 5

Operator

Figure 31. SOSF variation among test operators was greater than completion time.

49



uJ

O

E

Z

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 I I

- Average Number of Errors per
Subtask for all Modes and all Tasks

1 I I
1 2 3 4 5

Operator

Figure 32. Error rate showed the greatest variation among the test operators.

5O



The three additional modeswererepeated three times eachfor the complete task set
by at least one subject. One relatively primitive mode, "Position Control with Visual
Force/Torque Display," and two modesof sharedcontrol, "SharedForceAccommodation"
and "Hybrid Force Accommodation," were tested by at least one subject. These modes
are definedabovein the "Capabilities" section.

Two subjects whose performance was quite similar in the modes for which both data

sets exist were compared in all six modes for all of the first three tasks. Completion

time performance (Figure 34) is slightly improved (83 seconds vs. 100 seconds) with the

use of the graphical force display (significance not tested) although not by as much as

kinesthetic force feedback (mode 3). "Shared Force Accommodation" mode resulted in

the lowest overall completion time of any of the telemanipulated modes (approximately

44 seconds). "Hybrid Force Accommodation" in which both subjects had approximately

equal performance, showed an increase in completion time compared to kinesthetic force

feedback from about 70 to 80 seconds (significance not tested). SOSF performance (Figure

35) showed larger differences in the same pattern.

The third performance measure, task error rate (Figure 36) varied in a similar pattern

(no data were available for the hybrid mode). In this plot, data from each subject were

averaged for each point. Thus, for mode 1, data from all subjects are included, whereas

for modes 2, 4, and 5 (see Figure 36), only one subject is represented. For completeness,

completion time and SOSF are broken down by task type (Figures 37 and 38). These data

are averaged as described for task error rate.
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Figure 33. Video displayof force-torqueinformation. The bargraphsform a pseudoperspec-
tive view of the handcoordinateframe. The diagonalbar representsthe X direction (in and out
of screen). Bars at upper,right, and lower edgesrepresentthe momentsaroundthe X, Y, andZ
axesrespectively.Barson fight representfinger openingandclampingforces.
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Figure 34. Completion time for additional modes. Preliminary experiments were performed

with three additional modes: visual force display, and two shared control modes, "Shared Force

Accommodation" and "Hybrid Force Accommodation" (see text). Completion time with

"Shared Force Accommodation" was the best of any telerobotic mode tested. Generally speak-

ing, performance improved as the level of capability increased with the exception of "Hybrid

Force Accommodation" mode, which did not improve performance. Because of the limited

amount of data, these results are not statistically conclusive.
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DISCUSSION

This study has characterized an advanced-telemanipulation-system prototype in quan-

titative terms relevant to application planning. As yet, only recent theoretical develop-

ments in the modeling of bilateral manipulation systems (Hannaford 1989, Raju 1988) can

provide a full characterization of the system's performance independent of the operator,

and it remains to relatc these performance measures to performance on actual tasks. Thus

the approach was to use multiple test operators performing an array of different tasks

under the various operating conditions.

SYSTEM AND CONTROL MODES

One of the unique features of the ESAB system is its astonishing number of possible

control modes. Since each of the six task-space axes can be set into one of ten modes

independently, one million combinations are generated. In addition, several parameter

values must be specified for each axis. So far we have used only simple heuristics to choose

among the huge number of ways the system can be controlled. The preliminary evaluation

of two of these possible modes (Figures 34 through 36) showed that "Shared Force Ac-

commodation" -- a shared control mode in which Kinesthetic Force Feedback Control was

used in translation and rotation axes and Local Force Accommodation used in orientation

axes -- resulted in improved performance (relative to force-reflecting teleoperation), and

that "Hybrid Force Accommodation" -- in which pitch and yaw axes were locally con-

trolled and translation was operator controlled without force feedback -- resulted in poor

performance. This demonstrates that emerging forms of shared telerobotic control must

be careflllly selected and matched to the task. With the present state of knowledge of

manipulation, we have no way of knowing at this point whether among the thousands of

other possible modes there is one which enables even better performance than observed

under "Shared Force Accommodation."

It is reasonable that visual feedback of force/torque information should result in a

performance level intermediate between Position Control and Force Feedback (Figures

34 through 36). However, an earlier study (Hannaford 1987) did not find improvement.

Among the differences between the studies which might explain this are the use of rate

control in the earlier study vs. position control here, better procedures and training for

the test operators, and the improved dynamics of the mechanism and control system used

in the current study.

MECHANICS AND STABILITY

One of the key performance issues in design of active telemanipulators is stability. The

stability issue arises when forward position commands and kinesthetic force feedback com-

bine to form a closed-loop system encompassing the human operator, hand controller, robot

manipulator, and environment. Various studies (Hannaford & Anderson 1987, Hannaford

& Fiorini 1988, Anderson & Spong 1988, Hannaford 1989) have put forward analytical,

computational, and experimental models of this system and its dynamics. This work was

consistent with operational observations that stability during manipulator contact was in-
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versely related to force-feedbackscale.This parameter, the force-feedbackscalefactor, is
referred to as h12 in the hybrid two-port nomenclature described in Hannaford (1989).

This scale factor could be reduced to obtain stable operation. In the experiments reported

here, h12 was 0.1 so that only 1 lbf was applied to the operator for each 10 lbf applied to

the manipulator tip. However, the cost of the stability obtained in this manner was not

only reduction of the kinesthetic feedback of force information, but also, effective magni-

fication of the force perception threshold of the man-machine system. This is so because

the mechanism of the force-reflecting hand controller has significant friction levels between

the actuators and the handgrip which effectively absorb all force signals below a certain

force level, Fmin. The human operator has some perceptual threshold for forces, Fth.

Thus, the man-machine perception threshold is

Tram = (F min +Fth)
h12

in the sense that any force applied to the slave will not be felt if its magnitude is below

Tram. In our case, the effective man-machine threshold is then 10(Fmin +Fth). For

mechanisms available today, Fmin can be on the order of 8 oz., which in the above

example, neglecting the human operator threshold, scales to an effective deadband to force

sensitivity of 5 lb. Reducing this threshold is a major challenge in telemanipulation system

design.

TASKS

The tasks studied fell into one of two broad classes, "generic" and "application" tasks.

Although the main generic task (peg-in-hole) is a classical task in the robotics lab,

its relationship to tile "real world" is illustrated by the relationship of the tolerances used

in our task board to industrial parts-mating practice (Figure 9). The peg and hole sizes

reported here as well as those used by Hill (1977) (open triangle in the figure) are squarely

in the range of "General Machine Bearing Practice." One difference between the peg-in-

hole task and the industrial parts illustrated is that the pegs are long compared to their

diameter and thus have large contact surfaces. As a result, near the point where the tip of

the peg has just entered the hole, the bending moment can be quite large, causing binding

problems at that point in the task (as well as near extraction). Thus the parts-mating

capability demonstrated in this and other studies may be extendible to tighter tolerances

for parts with lower ratios of length to diameter.

Tile electrical connectors qualify as application tasks because they are stock items

unmodified for the experiments. Despite the occasionally high contact forces encountered

in some of the experimental conditions and the large number of repetitions, none of these

stock electrical connectors suffered damage from the robotic operations. In all of the con-

nector tasks, the task board contained the female connector and the male was manipulated

by the robot.

In both the velcro and electrical connector tasks, and to a lesser extent in the bay-

onet connector task, kinesthetic force feedback substantially reduced SOSF but did not
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substantially affect completion time. This indicated that thesetasks are primarily precise
positioning tasks and that while force feedback did not aid task performance in terms
of time, extraneous forcesarising from contact with the task board were reduced by the
kinesthetic force feedback.

SUBJECTS

Variation among subjects was surprisingly slight. Their backgrounds were similar
(engineeringstudents or recent graduates) except for one who was a physical education
major with training in gymnastics and coaching. This subject showed the best overall
performanceby eachof the measures.This apparent correlation betweenperformanceand
prior academicbackgroundmight suggestthat potential operators be grouped into classes
based on interests or aptitudes and that thesegroupings might predict relative levels of
telemanipulation performance. Of coursethis must be tested with statistically significant
numbersof test operators.

We cannot conclude that there was any predictive value to the "motor control" tests

the subjects performed prior to the telemanpulation experiments. Although further exper-

imentation is under way in this area, new preliminary results tend to confirm this negative

finding. Of course, some other test may be found which will reliably predict telemanipu-

lation performance. The personality-type hypothesis described above needs to be further

tested. If it appears to hold, then surveys or personality inventory tests might prove useful.

CONCLUSIONS AND RECOMMENDATIONS

The main results of this study are that manipulation performance can be quantified

along at least three dimensions, and that these measures showed task dependent increases

in performance as system capability was increased. The unaided human operator was

placed at the highest extreme of the scale of manipulation capability because present-

day remote-manipulation systems all introduce substantial distortions and movement con-

straints between the operator and task, and thereby reduce performance. It is expected to

take much time before telemanipulation performance will equal that of the bare-handed hu-

man. This study has quantified the ground remaining to be covered. In striving to achieve

this level of performance, these results should be interpreted as data supporting more

advanced modes of telemaniplflation than are presently in widespread use. Although addi-

tion of kinesthetic force feedback is of substantial help in moving performance towards the

extreme demonstrated by the bare-handed human, more advanced shared-control modes

offer fllrther improvements. It is also likely that further improvements in the fidelity of

kinesthetic force feedback will substantially improve performance.

As was found in the studies mentioned in the introduction, this work supports the

idea that multiple measures of performance must be used to characterize telemanipulation.

This is illustrated by cases such as the electrical connector tasks, in which kinesthetic force

feedback did not substantially affect completion time, but did sharply reduce extraneous

forces. In this case the precision positioning demands of the task were not aided by force

feedback, but potentially damaging forces could not be controlled without it.
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FUTURE WORK

Experimentation using similar tasks and methodology in which time delay is added
between master and slave sides is already under way. These experiments will be useful
for systems applications such as the SpaceStation, in which interfacing constraints add
time delayson the order of 50 msec,as well as future applications such as ground-based
teleoperation in low earth orbit, in which delaysfrom 2 to 4 secondswill be involved.

Other plans include expansionto dual arm capability and more complex tasks such as

module exchange and assembly. The direct human control data should be supplemented

with data from subjects wearing pressurized space gloves and calibrated against experi-
mental EVA.
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Appendix A

Modular Task Board For Telemanipulation Experiments

Douglas McAffee
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MODULAR TASK BOARD FOR ROBOTICS
AND TELEOPERATORS

The Modular Task Board, depicted in the following pages, was

developed for testing human subjects in experiments using the

Advanced Teleoperator System.

The Modular Task Board is composed of as many as nine separate

"task windows" designed to simulate generic and actual tasks that a

teleoperator/telerobotic system may be called upon to perform.

Main Features

Task Layout Easily Rearranged

The distances between tasks can be changed. Sometimes it is

desirable to vary the relative location and inter-task distances

to offset human learning, check adaptation, or provide variety.
Also, inter-task distances can be easily changed if after use

modification proves desirable.

Accommodates a Variety of Task Sizes

The task board features removable window frames so that

tasks wider than the standard 7-in. by 7-in. window can be
accommodated. The task frame itself is modular and allows

for larger tasks (up to 7 in. by 21 in.) to be mounted flush to the

task board surface by removing intermediary frame members.

Task Modification Easy and Inexpensive

New tasks can be easily fabricated and added without

removing or remaking the entire task board. If a task proves to
be undesirable or becomes obsolete, the whole task board does

not have to be scraped.

No Down Time

New tasks, modified tasks, or repairs can be made off-line to

task board usage, thereby allowing for continuous system

operation.
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Task Isolation

Often multiple task boards consist of a complicated, congested
array of multiple tasks, or, to avoid overcrowding, they limit
the number of separate tasks that can be performed.

Sometimes it is desirable to test only one or two tasks
sequentially and to focus on them only. The Modular Task
Board allows the user to isolate individual tasks by filling the
balance of the task board surface with "blank task windows."

Even Task Board Profile

The Modular Task Board is designed to allow most tasks to
mount almost flush to the task board surface. This helps to
avoid complicated task board topologies that could distract
from the experiments being performed.

Adjustable Inclination

The task board inclination can be adjusted to any angle
between horizontal and vertical.

Optimal Use of the Puma 560 Work Envelope

The task board is designed to fit optimally in the Puma 560's
work envelope. When positioned properly, the entire task
board surface can be reached.
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Appendix B

Task Board Modifications and Improvements

Brent Guggisberg
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TO: Blake Hannaford

FROM: Brent Guggisberg

SUBJECT: Task Board Notes

INTEROFFICE MEMORANDUM

19 December 1988

The general approach to designing new tasks has been experimental.

An attempt to create new tools and techniques along with their

evaluation has led to generic applications which are closely related to

scenarios for Space Station environments. The tasks can be used for

evaluating and studying human performance parameters using the Advanced

Teleoperator System. The results will provide valuable knowledge needed

for enhanced capabilities in telerobotics.

According to a current NASA report on status and future directions

for telerobotics research and development programs, the following areas

were identified as possible subjects for developing data to support

international standards: (i) task boards (2) system performance measures

on task boards (3) human performance measures on task boards with

teleoperation and (4) autonomous-telerobotic-teleoperated performance

comparisons. Standardization of task boards will allow different

techniques and technologies to be evaluated against a common set of

tasks. This will also permit the selection of consistent and compatible

approaches to telerobotic applications as well as establish common

measures of performance.

The purpose of this memo is to document the unique set of tasks

which has recently been developed at JPL. A brief outline of the task

description as well as performance objectives are discussed. Sketches

of the task components and photographs of the completed tasks are

provided.
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PEc- IN-HOLE TASK

Two versions of the peg-ln-hole task have been developed. The

first version had different sized chamfers and tolerances for each hole,

as shown in Figure I. This version was fabricated from 6061-T6

aluminum with a 303 stainless steel peg. Figure 2 shows a drawing of

the aluminum matrix set-up. Preliminary experiments using the peg-ln-

hole task for measuring operator performance have shown that chamfers do

not improve operator efficiency. Other tests showed no significant

difference in task completion time for the different hole tolerances.

A second version was machined without chamfers, but with tighter

tolerances (a 1.0000 inch peg in a 1.0005 inch hole). The new design

features hardened sleeves that can be easily changed or modified (see

Figure 3). The 9-hole matrix block was made from 7075-T7 aluminum

because it is the "toughest" aluminum available. In other words, the

material has a very high tensile strength, but not necessarily a large

hardness value. 7075-T7 aluminum is also "easy" to machine. The rear

cover plate (used to keep the sleeves in place) was made from 6061-T6

because this aluminum costs less and usually proves more readily

available. The sleeves were made of A-286 tool steel. Sleeves are

better for holding tight tolerances because they can be fabricated on a

lathe and honed to achieve the proper tolerance. Flight fasteners are

also made of this material. A-286 can be heat treated to obtain a

higher hardness value, but heat treating was not required for this

application. In addition, A-286 steel will not rust (an important

requirement for tight tolerance applications) and has a much higher

Rockwell hardness value than the machine ground 303 stainless steel peg.
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3

TOP: 1.0030

BOTTOM: 1.0032
NO COUNTERSINK

TOP: 1.0028

BOTTOM: 1.0032
1.062 DIA. COUNTERSINK

TOP: 1.0032

BOTTOM: 1.0032
1.125 DIA. COUNTERSINK

TOP: 1.0019

BOTTOM: 1.0019
NO COUNTERSINK

TOP: 1.0018

BOTTOM: 1.0016
1.062 DIA. COUNTERSINK

TOP: 1.0016

BOTTOM: 1.0016
1.125 DIA. COUNTERSINK

9

TOP: 1.0007

BOTTOM :1.0005
NO COUNTERSINK

TOP: 1.0006

BOTTOM: 1.0004
1.062 DIA. COUNTERSINK

TOP: 1.0006

BOTOM: 1.0004
!.125 OIR. COUNTERSINK

DIAMETER

0.9974

0.9977

0.9982

0.9988

PEG DIMENSIONS

: THIS END ENTERED
HOLE FIRST LENGTH = 4. IN.

DIAMETER

0.9944

0.9950

0.9964

0.9965

FIGURE 1: ORIGINAL PEG-IN-HOLE TASK DIMENSIONS
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SLEEVE TOOL )
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i;, ,: li iII _'
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FIGURE 3: NEW PEG-IN-HOLE TASK MODULE
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SLEEVES WERE MACHINED WITH THE FOLLOWING DIMENSIONS

A-286 SLEEVE, 9 PLS.

1.0002, 1.0003, and 1.0006 in. sleeves were also machined.

The peg has a diameter of 1.0002 in. and a length of 4.75 in.

FIGURE-4! NEW PEG-IN-HOLE TASK DIMENSIONS
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The following material selection possibilities for the peg-in-hole

task were also considered:

o Use the original peg-ln-hole 9-hole matrix block and add A-286

tool steel sleeves. 303 or 304 stainless steel for the peg.

o Use the original peg-in-hole 9-hole matrix block and add 4130

steel sleeves. Case hardened or tool steel for the peg.

o Use the original peg-in-hole 9-hole matrix block and add bronze

or brass sleeves. 303 or 304 stainless steel for the peg.

o Fabricate an entirely new block from 4130 steel with no sleeves.

Case hardened or tool steel for the peg.

o Fabricate an entirely new block from 303 or 304 stainless steel

with no sleeves. Bronze or brass for the peg.

It is important to remember that the block/sleeve and the peg must

exhibit proper disparity between each other to prevent seize-up. In

other words, one must be "hard" and the other must be "soft". For

example, a 303 stainless steel block with a 303 stainless steel peg is

no____ta possibility because gouging, gulling, and cold welding will occur.

Cold-worked steels are also not acceptable for tight tolerance

applications because they do not machine to a smooth surface. In

addition, a 9-hole matrix block made from 4130 or stainless steel would

be approximately 2.5 times heavier than one made from aluminum. This

weight factor would make it very hard and clumsy to change the module

around the task board. Moreover, 4130 will rust in normal laboratory

conditions.
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E].._['RTC__.L C,O_RS TASK

The followlng four electrical connectors are mounted in the task

window as shown in Figure 5:

(I) 3-pole electrical socket (Hewlett Packard 1251-2357).

(2) 2-pole flanged electrical inlet (General Electric 4343-5).

(3) 0.25 inch head-phone style socket.

(4) Cannon 15 pin rectangular connector.

A corresponding plug attaches to each socket at one end and

terminates under a clamp within the task module at the other end.

I ° 9 el

H 2-POLE

l * • oJ

FIGURE 5: ELECTRICAL CONNECTORS TASK
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BAYONET CONNECTOR TASK

This task involves the mating and unmating of a bendix PT06A-20-

16S/16P electrical connector. A white llne is painted on the socket

face in order to "see" the position of the notches for locking the

socket to the plug. The top camera view of the task board is used for

checking the connector's orientation. A square grip was fitted to the

round connector for better handling as shown in Figure 6 below.

FIGURE 6: BAYONET CONNECTOR TASK
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_LCRO TASK

An effort is made to minimize unnecessary force while removing and

attaching the different sized blocks.

• ¢ • ¢ • • ¢

¢ ¢ • ¢ • • •

¢ • ,¢¢ • ¢ ¢

. ¢ •

_¢•.¢¢ • ¢ ¢ ¢

_¢¢ ¢ .¢¢ • ¢ •)._¢_ y*cy'cy'¢_

_¢ .¢• _¢¢.¢¢ _¢• ¢

FIGURE 7: VELCRO ATTACHMENT TASK
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CIRCUIT tK)ARDR._R)VALTASK

This task contains a 6.5 inch deep x 6.03 inch width circuit board

rack (Buckeye STP BPR 6001-63N) with adjustable height. The rack has 12

board capacity and 0.348 card spacing. The task features a latching

door with indexing hinges; see Figure 8. Two stainless steel sliders

(Figure 9) rotate through two corresponding Delrin guides (Figure i0).

The guides employ spring loaded ball plungers (see manufactures parts

list on the attached page) that detent through holes in the slider.

The intensity of the indexing can be changed by adjusting the ball

plungers.

TASK WINDOW

DELRIN

GUIDE

(NOT SHOWN)

ELECTRONIC

CIRCUIT

BOARD

SLIDER

NO.2

DOOR HINGE

SLIDER NO.1

DOOR LATCH

FIGURE 8: CIRCUIT BOARD REMOVAL TASK
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i ! i i

II I I
I I I I
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-- E!-I-!-
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CR_TASKS

Two types of cranks are used on the task board. The first crank

has an extension arm and a knob while the other uses a simple one inch

diameter plastic knob. A nylon bushing with a 10-32 pan head screw are

used to attach aluminum knob to the aluminum handle. Both cranks

utilize a rotary switch with adjustable indexing (2 to 12 positions)

every 30 degrees for "positive action response" to the operator.

An attempt is made to rotate the cranks as smoothly as possible in

order to minimize unnecessary force. The crank task, shown in Figure II

below, operates throughout an entire 360 degree circle while the knob

task, shown in Figure 12, functions only within a 300 degree arc.

Numbers are engraved at each point of index.

4 5 6

3 7

,O
1 9

o lO

FIGURE 11: CRANK TASK FIGURE 12: KNOB TASK
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This task, displayed in Figure 13, includes a special "tool" for

making "planar contact" with a surface within the task module. The

tool pushes against four springs mounted in the rear of the task

structure. When the tool makes complete surface contact with the rear

task plate, four micro switches are engaged which light up four red

indicator lamps. If any part of the tool plate is not making absolute

contact with the spring/switch plate, the matching light will not turn

on. Figure 14 shows the tool handle which is an exact inverse of the

"smart-hand" grippers.

Two electrical component boxes are mounted on the back side of the

task structure which house two nine volt batteries and all electrical

wiring. A switch mounted outside one of the electrical component boxes

will turn on all lights at once for testing purposes.

TASK

WINDOW

ELECTRICAL
COMPONENT

BOX

I

O
I

I

I

4-IN. SQUARE

TUBING, 4 IN.
DEEP

,..) _.>d

C) C

TOOL

SURFACE

INDICATOR

LIGHTS, 4 PLS.

MICRO

SWITCHES

4 PLS.

TOOL HANDLE

(SEE FIGURE 14)

FIGURE 13: PLANAR CONTACT TASK
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3.000 * MATERIAL-WHITE NYLON
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_ -- I ........
.800

_[2.000 .......

_8°°i_o_:_ _, ......... .........
Im_wm mm_m

.200

.4375 DIA. THRU.
ql.-.-- 1.200-----P

FIGURE 14: NYLON TOOL HANDLE
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FASTENER REMOVAL/ATTA_ TASK

A distinctive set of tools was procured for this task. Modified

ratcheting drivers are used to screw various sized bolts into

corresponding threaded holes. The drivers have custom nylon tool

handles similar to the one in Figure 14.

The fasteners are coupled with one task plate (Figure 15) while

the driver and sockets are stored in a second task plate (Figure 16).

Sockets can be easily changed without extra assistance. Figure 17

shows a drawing of the socket containers. The driver also features a

special T-shaped extension for changing the ratchet direction. This

can also be performed using only the teleoperator system.

/
TASKWINDOW---./ HEX-HEADBOLTS

9 PLS.O o

0 0 o

0 0 0

FIGURE 15: FASTENER REMOVAL/ATTACHMENT TASK
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FIGURE 16: DRIVER/SOCKET HOLDER SUBTASK
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Neoprene Rubber Coatin_ for "Smart-Hand" Grippers and Task Board

Components.

Numerous components on task board as well as the "smart-hand"

grippers were coated with a resilient material that provides high

friction gripping. Plastic Dip, Solathane, Color Guard Tough Rubber

Coating, and neoprene rubber were all tested. The neoprene rubber

turned out to be the most durable covering. An outside vendor was used

to apply the .055 inch thick coating.
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Appendix C

Task Sequence Descriptions
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TASK SEQUENCE DESCRIPTIONS

?1. \ elcro Blocks

1.1

1.2

Attach and detach both blocks; tap mark, grasp small block, detach, attach block,

release grasp, tap on small block, grasp la,'ge block, detach, attach block, release

grasp, tap on large block, release grasp, tap mark.

Exchange block positions: tap mark, grasp small block (at position "A"), detach,

move to side (position "B"), attach, release, tap, grasp large block (position "C"),

detach, move to position "A", attach, release, tap, grasp small block (at position

"B"), move to position "C", attach, release, tap small block, tap mark.

2. Peg-in-Hole Matrix

2.x Insert peg in hole x: (nine holes, snbtasks 2.1 - 2.9) sta,'t with peg in gripper, tap

mark with peg tip, move t.o hole x, insert peg, release grasp, tap on end of peg,

regrasi) , extract peg, move to nmrk, tap nmrk.

3. Eh'ctric_l Connectol s

3.x Unmate and mate connector x. Tap mark, move to connector x, grasp connector,

unmatc, move to mark, tap mark with connector, move back to receptacle, mate,

r_.h,ase, tap connector, move back to nmrk, tap. Key: (1) 3-prong chassis power

connector, (2) 25-pin I/S-232 connector (3) 1/4" headphone plug.

4. Bendix Connector

4.1 Unmate and mate connector. Tap mark move to left receptacle (where connector

is mated), align jaws, grasp locking ring (via fixture), rotate counter clockwise 90

(leg, remove connector, move to right receptacle, align connector, rotate locking

ring clockwise 90 deg, ungrasp, move to mark, tap.

Subject Instructions. After practice, and before beginning the data taking, the subjects

were instructed to perform the tasks as fast as possible while minimizing the amount of

force used. In addition, the subjects were asked to avoid making "errors" of specific types

defined in Table 3.
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Operator Skill Testing and Prediction

Haya Zak
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OPERATOR SKILL TESTING AND PREDICTION

In an attempt to establish a teleoperator skill test that would constitute a prediction

criterion for operator's performance, two motor control tests were designed: the "Star

Test" and the "Circle Test."

Test Descriptions

Both tests were implemented on an IRIS 2400 graphics computer. The Star Test

had the following features: A figure of a star was presented to the subject, consisting of

an inner star outline and an outer star outline separated by approximately 0.25 inches

(Fig. D-l). The objective was to trace between the two star outlines (called "inside the

star") with a moused-controlled cursor, while maintaining maximum tracing speed and

accuracy. Speed was measured in "frames" (in one minute there are 1440 frames), an

indicator of the total time required to complete an end-to-end tracing of a star. Accuracy

was measured as "total length" -- the length (inches) of the cursor's path in tracing inside

and outside the star. The optimal length in tracing the star was 34.3S inches, thus any

"total length" recording that exceed this value is an indication of whether and by how

much the subject deviated from the optimal path. The recording of completion time and

performance accuracy started as soon as the subject pushed the mouse button. As long

as the cursor moved inside the star, the path traveled by the cursor was filled with a red

color, serving as a positive feedback to the subject. Once deviation from the inner path

occurred, the red color would stop filling the inner path and the green line marking the

path traveled by the cursor went outside the star, serving as a negative feedback. In order

to "get on the right track again," the subject had to get on the inner path exactly on or

before the point of deviation, marked by the end of the red filled part.

The Circle Test consisted of a target red circle (approximately 1 inch in diameter)

which was following a circular (invisible) path (approximately 10 inches in diameter) with

a speed of 22.35 cycles per minute. Another "small" blue circle (approximately 0.5 inch

in diameter) controlled by the mouse, was the "hunter." The objective was to keep the

small circle on target (the big circle) as the target moved along its path. Accuracy was

measured in this case as time on Target (percent of total time).

Experimental Procedures

The 5 subjects performed 32 repetitions of the Star Test and 60 repetitions of the

Circle Test. The high number of repetitions was designed to bring the subjects to a

reasonably reliable level of performance, i.e., where the "leveling ofF' of the learning curve

occurs. The Star Test was further elaborated to include various mouse orientations --

either 0, 90, 180, or 270 degrees in relation to the hand's grasp position. Subjects were

required to change the mouse orientation every repetition, such that 8 repetitions were

performed for each orientation.

115



Figure D-1. Screen image from the star tracing test used in motor control pre-testing. The

subjects used a mouse to trace between the two star outlines. The task was made more difficult

by imposing rotations of 90, 180, 270 and 0 degrees between mouse motion and cursor motion.

ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH
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Data Analysis

The two mean performance measures for the Star Test (total length and completion

time) were taken for each subject, then correlated with teleoperation performance measures

(time, force, and errors). A summary of results is shown in Tables D.I-D.8. The Pearson

product-moment correlation was computed for each test-teleoperation performance mea-

surement pair. In this method, the significance of each correlation is determined via the t

__v"h-_-2_ For 4 subjects (at a.lpha=0.05), the value required for significancetest (where t = _ j.

is t=0.95. The nmnbers in each square indicate the number of significant correlations out

of the total number of correlations (the latter in parenthesis).

Table D.1 summarizes our findings for the Star Test. The data breakdown is by mouse

orientation, by mode (FFB or MANUAL) and by task (1-4 and ALL). Since other kinds

of analysis performed on this data show task 4 to be quite different in nature from tasks

1 3, it was decided to treat task 4 as a special category, while tasks 1-3 could be averaged

together to form the ALL category. From table D.1 it appears that there were no significant

correlations, i.e., 0 out of 80, for the MANUAL mode, while 6 correlations out of 88 were

flmnd to be significant in the FFB mode. Nevertheless, 6(88) may still be random results

(for alpha=0.1), therefore, it is difficult to conclude that the FFB mode contributed to

the results. Within the FFB mode, the most "promising" orientation appears to be 180

degrees, but again 3(22) significant correlations may be due to chance alone. No particulm"

task appears to be taking the lead in terms of significance. The ALL category seems to

correlate slightly more than the individual tasks, yet this may very well be a chance result

as well. Overall, only 6(168) scored significantly, thus, the results do not allow us to reject

the null hYl)othesis at all)ha=0.05.

Tables D.4-D.8 summarize the Star Test results for each task (Table D.5, task 1; Table

D.6, task 2; Table D.7, task 3; Tat)le D.8, task 4; Table D.4 average of tasks 1-3). The

new information gained by this representation is that "time" for the Star Test may be a

better predictor of teleoperation measures: 7(84) were significant for "time" while 0(84)

was recorded for "length." The breakdown of ERRORS by task is not available, although

it does exist for all tasks (1-4). Since 2(8) correlations with ERRORS were found to be

significant, this is a promising result that should be explored in future experiments.

Table D.2 summarizes the results %r the Circle Test. While for the FFB mode there

are no significant correlations found, i.e., 0(5) for the TIME and ERRORS, 2(4) correla-

t i_ms were significant for the FORCE measure. The latter result offers good support for

rejecting the null hypothesis. Once again, comparison of the FFB mode to the MANUAL

mode results in FFB outperforming the MANUAL in terms of the number of significant

correlations.

Table D.3 is yet another sun-lnlary of results for the Circle Test.
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Concluding Remarks

The goal of establishinga valid teleopera,tor skill test hasnot yet beenachievedbased
on the results of the above experiment. Further researchis needed to investigate the
potential of the Star Test and the Circle Test for being reliable teleoperator skill tests.
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TABLE D.I

o

_m

TASK

1
2

3

4

ALL *

subtotal

1

2

STAR ,,Q o

0(4)
0(4)

1(4)
1(4)
0(6)

2 (22)
0(4)
0(4)

STAR , ,90 o

0(4)

O(4)
0(4)

0(4)
0(4)
o(6)
0122)

0(4)
0(4)

3 0(4) 0(4)
4

ALL* ....... 0 (4)

subtotal 0 (20)
total 2 (42)

,,0(4)
0(4)
Q(20)

o (52_)

STAR 180 o

0(4)
i(4)
0(4)
0(4)
2(6)

3(22)

0(4)
o(4)

STAR 270 °

0(4)
0(4)

0(4}
o(4) ,
i(6)

1(22)

o(4)
0(4)

total

1(16)

1(16)

3(24)

6(88)

0(16)
0(16)

0 (4) 0 (4) 0 (16)

0(4)
0(4)

0(20)
3(42)

0(4)
0(4)

0(20)
1(42)

0(16)

0(16)

O(8O)
6(168)

TABLE D.2

FFB

MODE

MANUAL

MODE

TIME

FORCE

ERRORS
subtotal

TIME

FORCE

subtotal

total

TASK 1

0(i)
0(i)

n/a

0(2)
0(1)
0(i)
0(2)
0(4)

TASK 2

0(I)
i(i)

n/a

1(2)

0 (1)
0(1)
0(2)
1(4)

TASK

o(i)
0(i)

n/a

0(2)
0(i)
0(1)
0(2)
0(4)

3 TASK 4

0(1)
0(1)
n/a

0(2)
o(i)
o(1)
0(2)
0(4)

1(1)
o11)
1 (3)

0(1)
o(i)
0(2)

1(5)

total

O(4)
2(4)
o(I)
2(11)

O(5)
o (5)

0(10)
2 (21)

TABLE D. 3

TIME FORCE ERRORS total

FFB 0 (5) 2 (5) 0 (i) 2 (Ii)
MODE

MANUAL 0 (5) 0 (5) n/a 0 (I0)
MODE

total 0 (I0) 2 (I0) 0 (I) 2 (21)

ALL includes tasks 1-3

ERRORS where all tasks
only, except for the correlations with
(1-4) are included.
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TABLE D.4

LENGTH
FFB

MANUAL

subtotal

TIME. FORCE ERRORS total

subtota_

total

O(4)
o(4}
0(8)

o(4)
0(4)

0(8)

0 (16)

0(4)
n/a

1(8)

1(16)

o(12)
0(8)
0(20)

2 (4)
2(8)

0 (8) 0.(4)

_FB 0(4) i(4) 2(4) 3(12)
TIME MANUAL 0 (4) 0 (4) n/a 0 (8)

TABLE D. 5

3(20)
3(40)

LENGTH

TIME

E

EFB

MANUAL

subtotal
FFB

MANUAL
subtotal

total

TLME

0(4)

o(4)
0(8)
O(4)
0(4)
0(8)
0(16)

TABLE

FORCE.

0(4)

o(4)
0(8)
o(4)
0(4)
0(8)
0(16)

ERRORS

n/a

n/a

n/a

n/a

n/a
n/a
n/a

total

0(8)

o(8)
0(16)

O(8)

0(8]

0(16)

0 (32)

m.6

w

LENGTH

TIME

FFB

MANUAL
subtotal

FFB

MANUAL
subtotal

total

IME

(4)
(4)
(8)
(4)
(4)

0(8)

0(16)

FORCE

0(4),
0(4)
0(8)
2 (4)

0(4)
2(8)

2(16)

ERRQR$

n/a
n/a

n/a

n/a
n/a

n/a
n/a

total

0(8)
o(8)
0(16)

2(8)

0(8)

2(16)
2 (32)

TABLE D. 7

LENGTH

TIME

FFB

MANUAL

subtotal

FFB
MANUAL

subtotal

total

TIME

0(4)
0(4)

0(8)
1(4)

0(4)

1(8)

1(16)

FORCE

0(4)
0(4)

0(8)

0(4)

0(4)

0(8)

0(16)

ERRORS

n/a
n/a

n/a

n/a

n/a

n/a

n/a

total

O(8)
O(8)
0(16)

1(8)
O(8)
1(16)
1 (32)

TABLE D. 8

LENGTH

TIME

T!_
FFBL 0 (4)

MANDAL 0 (4)
subtotal 0 (8)

FFB i (4)

MAN_]AL 0 (4 )
subtotal I(8)

total 1 (16)

FORCE

0(4)
0(4)
0(8)
0(4)
0(4)
0(8)
0(16)

ERRORS

n/a
n/a

n/a

n.la
n/a
n/_
n/a

total

o(8)
o(8)
0(16)

1 (8]
o(8)
1(16)

1 (32)
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Appendix E

Typical Force/Torque Records for Additional Tasks
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Figure E-I. Raw data acquired from a single repetition of the velcro experiment (continued

in figures E-2 and E-3). X, Y, and Z axis forces measured in the robot hand reference frame.

Spikes represent taps made intentionally by the operator to provide reference benchmarks in the
force signal.
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Figure E-4. Raw data acquired from a single repetition of the 25 pin connector experiment, con-
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